215.631.7111

S-BOND BLOG

Myths Regarding Lead-Free Solder Products and Joining Techniques

Soldering Techniques - Joing Methods
Brush Application

While it has been several years since manufacturers began moving to lead-free solder procedures, in part due to the European Union’s Restriction of Hazardous Substances Directive, some still believe myths that have long been inaccurate regarding the use of alloy joining materials that do not require flux and are based on lead and tin.

Temperatures Can Be Enough to Destroy Components

The first round of lead-free solder options to join metals and other materials were comprised of tin, silver and copper, which do have a slightly higher melting point of 217 degrees Celsius compared to existing solder’s 183 degrees Celsius. That disparity could cause problems regarding PC board damage.

However, newer products including several offered by S-Bond have significantly lower melting points that make it easier to join metals like aluminum. At the lowest temperatures, some materials can be joined at just 115 degrees Celsius.

Issues Regarding Silicon Will Require Other Materials

(more…)

Accounting for Material Thermal Expansion and Torsional, Tensile Strength

S-Bond material joining applications enable engineers to use multiple materials, such as materials and ceramics, in a variety of applications. However, just because aluminum and steel can be joined, as one example, does not mean that the joining process cannot introduce deformations or other issues.

Thermal Expansion Concerns in Bonding

When soldering two different types of metal together, both surfaces have to be heated in S-Bond can effectively assemble a wide variety of components with its unique bonding attributes - See more at: https://s-bond.com/solutions-and-service/s-bond-joined-components/#sthash.6FQ20NgZ.dpuforder for the solder to bond to both components. Materials expand as they heat, and different metals do so at a different rate. This can create problems as the joining site cools back down.

Two examples of materials that react easily to heat are aluminum and magnesium, which can expand at twice the rate of carbon steel and iron. If an aluminum sheet is soldered to a sheet of carbon steel, during the cool-down period the combined piece will warp with a slight curve. With more brittle components such as those made with ceramics, the combined part can shatter based on expansion during bonding and later cooling.

Solutions for Dissimilar Coefficients of Thermal Expansion

(more…)